Tag: Biomedical Research Enterprise

Give Input on Strategies for Optimizing the Impact and Sustainability of Biomedical Research

1 comment

An important, recurring discussion topic on our blogs is ways to maximize the impact and sustainability of NIH-funded biomedical research. In 2011, a Rock Talk post on managing NIH’s budget in fiscally challenging times solicited many comments and led, in part, to an NIH-wide policy on special council review for applications from PIs who have more than $1 million in NIH funding. We have also implemented new programs that provide more stable support for investigators over longer time periods. A more recent example of the “maximizing impact and sustainability” theme is an NIGMS Feedback Loop post that discussed ideas for how to optimize the biomedical research ecosystem.

We’re each leading an NIH-wide working group focused on topics key to this important theme. One group (chaired by Sally) is exploring ways to decrease the time it takes investigators to reach research independence, and the other (chaired by Jon) is looking to develop more efficient and sustainable funding policies and other strategies.

Recently, NIH solicited your comments on an “emeritus award” concept as part of activities of the group chaired by Sally. The group is now in the midst of analyzing all of the comments it received to see what the next steps will be in regard to this type of award.

To inform the efforts of Jon’s group, NIH has just issued a new request for information (RFI) seeking your:

  • Input on key issues that currently limit the impact of NIH’s funding for biomedical research and challenge the sustainability of the scientific enterprise.
  • Ideas about adjusting current funding policies to ensure both continued impact and sustainability of the NIH research enterprise.
  • Ideas for new policies, strategies and other approaches that would increase the impact and sustainability of NIH-funded biomedical research.
  • Comments on any other issues that you feel are relevant.

While we read and consider comments responding to our blog posts, in order to make your input part of our formal analysis of RFI responses, it needs to be submitted via the RFI by May 17.

Give Input on NIGMS Undergraduate Student Development Programs to Enhance Diversity in the Biomedical Research Workforce

2 comments

As part of our longstanding commitment to fostering a highly trained and diverse biomedical research workforce, we have launched a review process to ensure that our programs contribute most effectively to this goal. An important part of this effort is to seek your input.

To this end, we just issued a request for information for feedback and novel ideas that might bolster the effectiveness of our undergraduate student development programs. Some of the things we’re particularly interested in are:

  • The advantages (or disadvantages) of supporting a single program per institution that begins after matriculation and provides student development experiences through graduation.
  • Approaches to leveraging successful institutional models for preparing baccalaureates for subsequent Ph.D. completion.
  • Strategies to build institutional capabilities and effective institutional networks that promote undergraduate student training programs that lead to successful Ph.D. completion.
  • If applicable, your specific experiences with any of our student development programs and their outcomes in preparing participants for biomedical research careers.

More broadly, we welcome your suggestions regarding the most important issues we can address in this arena.

I encourage you to share your views (no longer available) on these and associated topics by the response deadline of April 15, 2015.

New NIGMS Guidelines for Funding Investigators with Substantial Unrestricted Research Support

4 comments

Jon Lorsch recently posted a message about the responsibility that our grantee community shares with us to help the research enterprise thrive. One way that we have addressed this is by taking a hard look at the funding of investigators who are already well supported. As most of you know, in an effort to increase efficiency and to support as many outstanding scientists as possible, we have long required special advisory council approval  for any grant that, in combination with the principal investigator’s (PI’s) other research support, would provide over $750,000 in direct costs.

We have now developed guidelines that we will use in awarding R01s and other research grants to investigators with substantial levels of long-term, unrestricted research funding from any source. Unrestricted funding means that it is not project-based and may be used to conduct research on a broad topic at the PI’s discretion. We consider such support substantial and long-term if it is over $400,000 in direct costs (excluding the PI’s salary and direct support of widely shared institutional resources) and extends for at least 2 years from the time the NIGMS grant would be funded.

Abiding by these new guidelines will enable us to fund additional labs, increasing the likelihood of making significant scientific advances. The guidelines will take effect for applications submitted on or after January 2, 2016. If you might be affected by the new guidelines, I encourage you to discuss your plans with your program director.

More on My Shared Responsibility Post

4 comments

Thanks for all of the comments and discussion on my last post. There were many good points and ideas brought up, and these will be very useful as we consider additional policy changes at NIGMS and NIH. I hope these conversations will continue outside of NIH as well.

Several people asked about the current distribution of funding among NIGMS principal investigators (PIs). Here are a few relevant statistics:

  • In terms of the NIH research funding of NIGMS grantees, in Fiscal Year 2013, 5 percent of the PIs had 25 percent of this group’s total NIH direct costs and 20 percent of the PIs had half of it. A similar pattern was recapitulated NIH-wide.
  • NIGMS PIs who had over $500,000 in total NIH direct costs held approximately $400 million in NIGMS funding.
  • The figure below shows the distribution of total NIH direct costs for NIGMS-supported investigators as well as the average number of NIH research grants held by PIs in each range.
Graph representing distribution of NIGMS investigartors' total NIH direct costs for research in FY2013
Figure 1. The distribution of NIGMS investigators’ total NIH direct costs for research in Fiscal Year 2013 (blue bars, left axis). The number below each bar represents the top of the direct cost range for that bin. The average number of NIH research grants held by PIs in each group is also shown (red line with squares, right axis). The direct costs bin ranges were chosen so that the first four bins each included 20 percent of NIGMS investigators.

With regard to changes NIH might make to help re-optimize the biomedical research ecosystem, NIH Director Francis Collins recently formed two NIH-wide working groups to develop possible new policies and programs related to some of the issues that I highlighted in my blog post and that were discussed in the subsequent comments. The first group, chaired by NIH Deputy Director for Extramural Research Sally Rockey, will explore ways to decrease the age at which investigators reach independence in research. The second, chaired by me, will look at developing more efficient and sustainable funding policies. Once these committees have made their recommendations, Sally plans to set up a group to consider the question of NIH support for faculty salaries.

As I mentioned in my post, we at NIGMS have been working for some time on these issues. We’ll be discussing additional changes and ideas with the community in the coming weeks and months on this blog and in other forums, including our upcoming Advisory Council meeting.

A Shared Responsibility

63 comments

The doubling of the NIH budget between 1998 and 2003 affected nearly every part of the biomedical research enterprise. The strategies we use to support research, the manner in which scientists conduct research, the ways in which researchers are evaluated and rewarded, and the organization of research institutions were all influenced by the large, sustained increases in funding during the doubling period.

Despite the fact that the budget doubling ended more than a decade ago, the biomedical research enterprise has not re-equilibrated to function optimally under the current circumstances. As has been pointed out by others (e.g., Ioannidis, 2011; Vale, 2012; Bourne, 2013; Alberts et al., 2014), the old models for supporting, evaluating, rewarding and organizing research are not well suited to today’s realities. Talented and productive investigators at all levels are struggling to keep their labs open (see Figure 1 below, Figure 3 in my previous post on factors affecting success rates and Figure 3 in Sally Rockey’s 2012 post on application numbers). Trainees are apprehensive about pursuing careers in research (Polka and Krukenberg, 2014). Study sections are discouraged by the fact that most of the excellent applications they review won’t be funded and by the difficulty of trying to prioritize among them. And the nation’s academic institutions and funding agencies struggle to find new financial models to continue to support research and graduate education. If we do not retool the system to become more efficient and sustainable, we will be doing a disservice to the country by depriving it of scientific advances that would have led to improvements in health and prosperity.

Re-optimizing the biomedical research enterprise will require significant changes in every part of the system. For example, despite prescient, early warnings from Bruce Alberts (1985) about the dangers of confusing the number of grants and the size of one’s research group with success, large labs and big budgets have come to be viewed by many researchers and institutions as key indicators of scientific achievement. However, when basic research labs get too big it creates a number of inefficiencies. Much of the problem is one of bandwidth: One person can effectively supervise, mentor and train a limited number of people. Furthermore, the larger a lab gets, the more time the principal investigator must devote to writing grants and performing administrative tasks, further reducing the time available for actually doing science.

Although certain kinds of research projects—particularly those with an applied outcome, such as clinical trials—can require large teams, a 2010 analysis by NIGMS and a number of subsequent studies of other funding systems (Fortin and Currie, 2013; Gallo et al., 2014) have shown that, on average, large budgets do not give us the best returns on our investments in basic science. In addition, because it is impossible to know in advance where the next breakthroughs will arise, having a broad and diverse research portfolio should maximize the number of important discoveries that emerge from the science we support (Lauer, 2014).

These and other lines of evidence indicate that funding smaller, more efficient research groups will increase the net impact of fundamental biomedical research: valuable scientific output per taxpayer dollar invested. But to achieve this increase, we must all be willing to share the responsibility and focus on efficiency as much as we have always focused on efficacy. In the current zero-sum funding environment, the tradeoffs are stark: If one investigator gets a third R01, it means that another productive scientist loses his only grant or a promising new investigator can’t get her lab off the ground. Which outcome should we choose?

My main motivation for writing this post is to ask the biomedical research community to think carefully about these issues. Researchers should ask: Can I do my work more efficiently? What size does my lab need to be? How much funding do I really need? How do I define success? What can I do to help the research enterprise thrive?

Academic institutions should ask: How should we evaluate, reward and support researchers? What changes can we make to enhance the efficiency and sustainability of the research enterprise?

And journals, professional societies and private funding organizations should examine the roles they can play in helping to rewire the unproductive incentive systems that encourage researchers to focus on getting more funding than they actually need.

We at NIGMS are working hard to find ways to address the challenges currently facing fundamental biomedical research. As just one example, our MIRA program aims to create a more efficient, stable, flexible and productive research funding mechanism. If it is successful, the program could become the Institute’s primary means of funding individual investigators and could help transform how we support fundamental biomedical research. But reshaping the system will require everyone involved to share the responsibility. We owe it to the next generation of researchers and to the American public.

Graph representing NIGMS principal investigators (PIs) without NIH R01 funding between 200 and 2014.
Figure 1. The number of NIGMS principal investigators (PIs) without NIH R01 funding has increased over time. All NIGMS PIs are shown by the purple Xs (left axis). NIGMS PIs who were funded in each fiscal year are represented by the orange circles (left axis). PIs who had no NIH funding in a given fiscal year but had funding from NIGMS within the previous 8 years and were still actively applying for funding within the previous 4 years are shown by the green triangles (left axis); these unfunded PIs have made up an increasingly large percentage of all NIGMS PIs over the past decade (blue squares; right axis). Definitions: “PI” includes both contact PIs and PIs on multi-PI awards. This analysis includes only R01, R37 and R29 (“R01 equivalent”) grants and PIs. Other kinds of NIH grant support are not counted. An “NIGMS PI” is defined as a current or former NIGMS R01 PI who was either funded by NIGMS in the fiscal year shown or who was not NIH-funded in the fiscal year shown but was funded by NIGMS within the previous 8 years and applied for NIGMS funding within the previous 4 years. The latter criterion indicates that these PIs were still seeking funding for a substantial period of time after termination of their last NIH grant. Note that PIs who had lost NIGMS support but had active R01 support from another NIH institute or center are not counted as “NIGMS PIs” because they were still funded in that fiscal year. Also not counted as “NIGMS PIs” are inactive PIs, defined as PIs who were funded by NIGMS in the previous 8 years but who did not apply for NIGMS funding in the previous 4 years. Data analysis was performed by Lisa Dunbar and Jim Deatherage.

UPDATE: For additional details, read More on My Shared Responsibility Post.