Author: Jake Basson

Headshot of Jacob Basson.

Jake, who trained in biostatistics and cardiovascular genetics, is a statistical policy analyst in the NIGMS Division of Data Integration, Modeling, and Analytics. He uses a diverse suite of data science tools to study the Institute’s research portfolios, training programs, and funding policies.

Posts by Jake Basson

MIRA Renewals: Award Rates and Budget Changes

9 comments

NIGMS funded its first round of renewals for the Maximizing Investigators’ Research Award (MIRA) program in Fiscal Year (FY) 2021. In this post, we compare data on the award rates and award sizes of MIRA renewals and R01 renewals to provide some insights into the early outcomes of MIRA renewals. We also examine award rates and budget changes for investigators applying to convert their NIGMS R01s to MIRAs.

In the first section, we present award rates (the percentage of reviewed applications that receive funding), considering both programs overall and then FY 2021 renewal applications specifically. The second section describes the award sizes for the two types of grants collectively, followed by award size changes for FY 2021 renewals. Where sample sizes and privacy concerns allow, we distinguish between established investigators (EIs) and early stage investigators (ESIs) renewing their first grants (“ex-ESIs”) as they often have different characteristics for award rates and sizes. All budget values shown in the post are yearly direct costs.

Continue reading “MIRA Renewals: Award Rates and Budget Changes”

NIGMS Training Application and Funding Trends: Individual NRSA Postdoc and Pathway to Independence Awards

1 comment

Our Division of Training, Workforce Development, and Diversity (TWD) supports programs at multiple career stages to foster the development of a strong and diverse biomedical research workforce. This post is the first in a series focused on data from NIGMS training programs and is similar to the ones we have done for our research project grant portfolio. Below, we examine trends in NIGMS applications and awards for the Individual Postdoctoral National Research Service Award (NRSA) (F32) and Pathway to Independence Award (K99) programs. NIGMS also supports institutional postdoctoral awards that include the Institutional Research and Academic Career Development Awards (IRACDA) (K12) and NRSA Institutional Postdoctoral Training Grants (T32) focused in clinical areas, and data on these programs were shared previously.

Continue reading “NIGMS Training Application and Funding Trends: Individual NRSA Postdoc and Pathway to Independence Awards”

Application, Review, Funding, and Demographic Trends for Maximizing Investigators’ Research Awards (MIRA): FY 2016-2018

1 comment

NIGMS has made MIRA awards to Established Investigators (EI) and Early-Stage Investigators (ESI) for three full Fiscal Years (FY). In this Feedback Loop post, we provide an analysis of application, review, funding, and demographic trends for the MIRA program.

For the first two rounds of EI MIRAs, eligibility was limited to well-funded NIGMS investigators: PIs with two or more NIGMS R01-equivalent awards or one NIGMS R01-equivalent award for >$400,000 in direct costs. For the FY 2018 EI competition and beyond, eligibility was expanded to include any investigator with a single PD/PI NIGMS R01-equivalent that is up for renewal. For the FY 2016 ESI MIRA competition, ESIs and New Investigators (NI) at the assistant professor or equivalent level were eligible, whereas eligibility was restricted to ESIs in subsequent rounds. As always, a PI can apply for an extension of ESI status for various life and career events, including childbirth.

Continue reading “Application, Review, Funding, and Demographic Trends for Maximizing Investigators’ Research Awards (MIRA): FY 2016-2018”

Analysis of NIGMS Support of Research Organisms

1 comment

NIGMS is committed to supporting a wide-ranging portfolio of biomedically relevant fundamental research. As we discussed in a previous Feedback Loop post, we see this approach as the best way to increase our understanding of life. For many years, one important dimension of diversity in our scientific portfolio—the organisms scientists use to conduct their research—was limited by technical considerations. However, recent advances such as the decreasing cost of genome sequencing and the development of the CRISPR system for genetic modification now make it possible to use an expanded range of research organisms.

Continue reading “Analysis of NIGMS Support of Research Organisms”

More Information About New and Early Stage Investigator MIRA Outcomes

0 comments

There has been ongoing discussion—both here and in the general scientific community—related to the first MIRA awards to New and Early Stage Investigators (NI/ESI). One question that arose was why applications were administratively withdrawn. Both the NIH Center for Scientific Review and multiple NIGMS staff members, including the program director with a portfolio of grants closest to the applicant’s area of science, screened the applications. Of the withdrawn applications, a majority (~80%) were returned prior to review because they proposed research that fell outside of the NIGMS mission. Others were withdrawn because the applicant was not eligible for the FOA. After review, some applications were withdrawn because the PI accepted another award that was mutually exclusive with the MIRA. As recommended on the MIRA website and elsewhere, we encourage anyone who intends to apply for the Early Stage Investigator MIRA to discuss their plans with the appropriate NIGMS program director to determine whether the proposed research area is within the mission of the Institute and if the applicant is eligible to apply.

A major NIGMS goal is to support a broad portfolio that is diverse in research topics, approaches, institutions and investigators. This means we are looking carefully at the outcomes of awards, including gender and race/ethnicity data. We are also trying to take proactive steps to prevent bias during the review, for instance by covering the topic as part of reviewer orientations that take place several weeks before the MIRA study sections meet.

In our recent summary of MIRA applicant and awardee demographics, we looked to see how applications from underrepresented groups compared to those from well-represented groups (White and Asian). The p-value for a difference between the distributions of funded and unfunded applications from these groups was 0.63, meaning that there was no statistically significant difference between the two groups. We also compared the MIRA success rates to those of ESI applicants for NIGMS R01s in fiscal years (FY) 2011-2015 (Table 1).

Continue reading “More Information About New and Early Stage Investigator MIRA Outcomes”

Trending Young in New and Early Stage Investigator MIRA

4 comments

Dr. Jon Lorsch

The MIRA presentation at the September 2016 Advisory Council meeting begins at 17:13.

Following up on the previous post regarding the first MIRA awards to New and Early Stage Investigators, we issued awards to a total of 94 grantees. In addition to ensuring that we are funding the highest quality science across areas associated with NIGMS’ mission, a major goal is to support a broad and diverse portfolio of research topics and investigators. One step in this effort is to make sure that existing skews in the system are not exacerbated during the MIRA selection process. To assess this, we compared the gender, race/ethnicity and age of those MIRA applicants who received an award with those of the applicants who did not receive an award, as well as with New and Early Stage Investigators who received competitive R01 awards in Fiscal Year (FY) 2015.

We did not observe any significant differences in the gender or race/ethnicity distributions of the MIRA grantees as compared to the MIRA applicants who did not receive an award. Both groups were roughly 25% female and included ≤10% of underrepresented racial/ethnic groups. These proportions were also not significantly different from those of the new and early stage R01 grantees. Thus although the MIRA selection process did not yet enhance these aspects of the diversity of the awardee pool relative to the other groups of grantees, it also did not exacerbate the existing skewed distribution.

We did observe significant differences among the mean ages of the MIRA grantees, MIRA applicants who did not receive an award and the R01-funded grantees. The MIRA grantees are 1.5 years younger on average than those MIRA applicants who did not receive an award (37.2 vs. 38.7 years, p<0.05), and about 2 years younger than the FY 2015 R01-funded Early Stage Investigators (37.2 vs. 39.1 years, p<0.001). The R01-funded New Investigators in FY 2015, a pool which includes a few individuals older than 60 years, average an age of 45.6 years. This selection for funding investigators earlier is a promising feature of the first round of MIRA awards to New and Early Stage Investigators. As noted at the recent meeting of our Advisory Council, where Jon presented these data, 37 years is still relatively late for investigators to be getting their first major NIH grant. We will continue to monitor this issue with the goal of further decreasing that figure.

Revisiting the Dependence of Scientific Productivity and Impact on Funding Level

13 comments

A 2010 analysis by NIGMS and subsequent studies by others (Fortin and Currie, 2013; Gallo et al., 2014; Lauer et al., 2015; Doyle et al., 2015; Cook et al., 2015) have indicated that, on average, larger budgets and labs do not correspond to greater returns on our investment in fundamental science. We have discussed the topic here in A Shared Responsibility and in an iBiology talk. In this updated analysis, we assessed measures of the recent productivity and scientific impact of NIGMS grantees as a function of their total NIH funding.

We identified the pool of principal investigators (PIs) who held at least one NIGMS P01 or R01-equivalent grant (R01, R23, R29, R37) in Fiscal Year 2010. We then determined each investigator’s total NIH funding from research project grants (RPGs) or center grants (P20, P30, P50, P60, PL1, U54) for Fiscal Years 2009 to 2011 and averaged it over this 3-year period. Because many center grants are not organized into discrete projects and cores, we associated the contact PI with the entire budget and all publications attributed to the grant. We applied the same methodology to P01s. Thus, all publications citing the support of the center or P01 grant were also attributed to the contact PI, preventing underrepresentation of their productivity relative to their funding levels. Figure 1 shows the distribution of PIs by funding level, with the number of PIs at each funding level shown above each bar.

Continue reading “Revisiting the Dependence of Scientific Productivity and Impact on Funding Level”