Avoiding Hype and Enhancing Awareness in Science Communication

When I joined NIGMS about four years ago, I was struck by the number of press releases from journals and grantee institutions that came across my desk each day. Many of them focused on a recently published paper and failed to explain how the work fit into the broader field. Others overstated the research results to make them sound more exciting and closer to clinical application.

I moderated one of the panel discussions.

Around the same time, science communicators started writing articles and conducting studies about the effects of hyped research findings (e.g., Schwartz et al., 2012; Yavchitz et al., 2012 Exit icon, Sumner et al., 2014 Exit icon; Vox, 2017 Exit icon). While these discussions focused on clinically oriented research, we at NIGMS began thinking deeply about how the issue relates to basic biomedical science. On the heels of our work with the Federation of American Societies for Experimental Biology (FASEB) on enhancing rigor and reproducibility in biomedical research, we started talking to them about this topic as well. Two years later, we were pleased to host their Workshop on Responsible Communication of Basic Biomedical Research: Enhancing Awareness and Avoiding Hype Exit icon.

The June 22 meeting brought together a diverse group of science communicators Exit icon [PDF, 22KB] who included early and established investigators, researchers who study science communication, academic and corporate communication officers, policy advisors and journalists. Each panelist represented a stakeholder group with a role in what panelists later called the “hype cycle” and shared his or her perspectives on the problems of hype, the incentives that cause it and recommendations for avoiding it. The meeting focused on basic biomedical research, but the discussions were also relevant to other areas of science.

In her keynote address Exit icon, veteran science journalist Erika Check Hayden defined hype as “exaggerating the outcomes of research, for whatever motives people have, leading to potential negative effects due to inaccurate portrayal of research.” She credited this definition to Judith Greenberg, our deputy director.

The keynote address by Erika Check Hayden focused on new directions in science communication.

The subsequent discussions Exit icon highlighted the shared responsibility among all the stakeholder groups for improving science communication and changing the incentives for it. Panelists acknowledged that scientists sometimes oversell the conclusions of studies hoping to get their work published in “better” journals or to improve their chances for obtaining funding; journals may decide on manuscripts to publish based on which ones they think will be cited the most or get press attention; communication officers and journalists are often judged by how many hits their stories get; and universities and research institutes may consider the fundraising potential of scientific news stories.

Here are some of the topics discussed during the workshop that really resonated with me. Continue reading

Your Perspectives: Catalyzing the Modernization of Biomedical Graduate Education

NIGMS actively supports efforts to catalyze the modernization of biomedical graduate education. We have undertaken a number of initiatives to stimulate this process, including hosting a symposium to showcase innovations in biomedical graduate education and providing administrative supplements to T32 predoctoral training grants to enhance rigor and reproducibility, career development and skills development.

On June 8, 2016, we took another step to encourage such change with the release of a Request for Information (RFI) seeking input on how our institutional predoctoral training grants program can be used to promote innovations in training. The RFI asked members of the community to weigh in on the strengths and weaknesses of the current system, the skills the next generation of graduate students should acquire, barriers to change and strategies to promote change through our institutional predoctoral research training grants.

We received 90 unique responses from stakeholders ranging from students and faculty to institutions and professional societies. Themes represented in the responses were organized around five major categories:

  • Institutional and training-related issues,
  • Skills development,
  • Systemic issues within the research enterprise,
  • Careers, and
  • Administrative and review issues.

Figure 1. Major Categories in Graduate Education RFI Responses. Bar chart showing the number of RFI responses in which one of the major categories was represented. A total of 90 unique responses were received for the RFI.

While NIGMS recognizes that those who responded to the RFI are unlikely to represent a random subset of the individuals and organizations who have a stake in graduate biomedical education, these responses provide insights regarding how members of the extramural community view the current challenges and opportunities in graduate biomedical education. As such, these comments will inform NIGMS’ ongoing efforts to catalyze the modernization of graduate education through a new predoctoral T32 funding announcement, which is currently under development. For more details about the analysis, we encourage you to explore the report.

Partnering with Professional Societies

Not long ago, Jon Lorsch and I and several other NIGMS staff met with the leadership of one of the professional societies that represents many of our grantees. It was an opportunity to discuss NIGMS’ policies and grant mechanisms, hear about challenges that investigators face, and share ideas about how the biomedical research and training environment can be improved.

Meetings of this kind are not unusual, but they are just one of the ways we interact with the society partners related to NIGMS’ mission and, through them, communicate with their members. Another way is by attending the societies’ scientific meetings, where our staff learn about the latest research in the field, conduct grantsmanship workshops, and answer questions about the funding process.

The professional societies help us disseminate—and receive—information. For instance, they share our notices about funding opportunities and changes in NIH policies as well as respond to our requests for information. Leadership from the professional societies attend the open sessions of our Advisory Council meetings and sometimes speak during the public comment period, enhancing the exchange of information between the Institute and our constituency.

We also collaborate with professional societies on specific activities. Recent examples include meetings convened by FASEB on rigor and reproducibility Exit icon and by ASBMB on research training. With ASCB, we co-organized the Life: Magnified exhibit, which brought biomedical science to a public place.

We greatly value our interactions with the societies and invite suggestions for additional ways we can partner.

Give Input on Strategies for Modernizing Biomedical Graduate Education

We’ve been examining how best to support the modernization of graduate education at the national level to ensure that trainees gain the skills, abilities and knowledge they need to be successful in the biomedical research workforce.

We’re involved in a variety of efforts. For example, we and other NIH institutes and centers provided support for the development of training modules on rigor and reproducibility. We encouraged graduate programs at institutions that receive predoctoral T32 support from us to make their alumni career outcomes publicly available to prospective and current students. We’ve also offered administrative supplements to predoctoral T32 training grants to support innovative approaches in the areas of rigor and reproducibility, career outcomes and graduate education. In April, we held a symposium covering these and other topics in graduate education. Finally, we plan to write a new predoctoral T32 funding announcement.

We’re now soliciting input from the biomedical research community and other interested groups in response to a new request for information (RFI) on strategies for modernizing biomedical graduate education. We’d like to know your thoughts on:

  • Current strengths, weaknesses and challenges in graduate biomedical education.
  • Changes that could enhance graduate education to ensure that scientists of tomorrow have the skills, abilities and knowledge they need to advance biomedical research as efficiently and effectively as possible.
  • Major barriers to achieving these changes and potential strategies to overcome them.
  • Key skills that graduate students should develop in order to become outstanding biomedical scientists and the best approaches for developing those skills.
  • Potential approaches to modernizing graduate education through the existing NIGMS institutional predoctoral training grants.
  • Anything else you feel is important for us to consider.

Responses can be submitted via an online form Exit icon and can be anonymous. They can also be emailed to modernPhD@mail.nih.gov. The due date for responses is August 5, 2016.

Small Business Opportunity to Develop Cell Line Identification Tools

Misidentified and contaminated cell lines are believed to be a significant cause of irreproducible and non-generalizable research results. Although this issue has been widely discussed, including on this blog, surveys have shown that many researchers find the costs, time and effort of cell line authentication to be barriers to using it as a routine quality-control measure. There’s a new trans-NIH Small Business Innovation Research (SBIR) initiative that aims to reduce these barriers and make cell line authentication affordable and routine.

Along with other parts of NIH, we’re participating in a funding opportunity announcement (FOA) to support SBIR projects focused on developing novel, reliable, rapid and cost-effective tools to assist researchers in confirming the identity and/or sex of the cells that they use in their work. The FOA will also support the development of tools for cases in which there are currently no good methods of identification, such as distinguishing between cells derived from inbred mouse lines. We encourage applications from all eligible organizations. Standard application due dates apply.

If you’re interested in applying and would like more information, you can email me, my NIGMS colleague Zhongzhen Nie or other NIH program staff listed in the FOA. We look forward to receiving your best ideas for developing and commercializing new cell line identification tools.

Catalyzing the Modernization of Graduate Education

A major overhaul of how we educate graduate students in biomedical research is long overdue.

Science has changed dramatically over the past three decades. The amount of information available about biological systems has grown exponentially. New methods allow us to examine the inner workings of cells with unprecedented resolution and to generate expansive datasets describing the expression of every mRNA or metabolite in a system. Biomedical research is becoming increasingly interdisciplinary and collaborative, and the questions we seek to answer are more and more complex. Finally, as the scientific enterprise has expanded, Ph.D.s have pursued increasingly diverse careers in the research and development, education and related sectors.

Despite these major changes, we educate Ph.D. students in biomedical research in essentially the same way as we did 25 or more years ago. As Alan Leshner put it in a recent editorial Exit icon in Science magazine, “It is time for the scientific and education communities to take a more fundamental look at how graduate education in science is structured and consider, given the current environment, whether a major reconfiguration of the entire system is needed.”

Problems related to the reproducibility and rigor of scientific studies Exit icon are likely driven in part by the inadequacies of an outdated system for educating our trainees. When nearly any student can sequence hundreds of millions of bases of DNA in a few days, does it make sense that all of our students are not given a significant amount of training in quantitative and computational analyses? And as we delve into more complex biological systems, shouldn’t students be receiving in-depth training in rigorous experimental design and data interpretation before they embark on their thesis work?

Continue reading

NIH Workshop on Reproducibility in Cell Culture Studies

NIGMS is actively involved in NIH-wide efforts to enhance rigor and reproducibility in research. As part of our work on this issue, we will co-host a trans-NIH workshop on September 28-29, 2015, to examine current quality-control challenges in cell culture research and identify opportunities for expanding its capabilities and applications. The meeting will be videocast and archived on the NIH Videocasting site.

The workshop agenda includes panel discussions led by researchers from academia and industry on cell line identification, genetic and phenotypic characterization of cells, heterogeneity in populations of cells, reagents, and research and reporting standards. The meeting will also cover new approaches to understanding the characteristics and behaviors of cultured cells and technologies for enhancing their usefulness in research.

Reproducibility Update: New Resources and Expected Changes to the SF424 Application Guide

I previously told you about the development of an NIGMS clearinghouse site where members of the research community will be able to find grantee-produced training materials designed to teach rigorous experimental design and enhance data reproducibility. Since then, NIH has established two new related sites. The first is a Rigor and Reproducibility web portal that provides general information about NIH efforts and offers resources that include guidelines for how research results should be reported and links to publications written by NIH authors on rigor, reproducibility and transparency.

The second site is focused on grants and funding and includes a summary of NIH’s proposal to clarify its instructions to applicants to emphasize expectations that rigorous experimental design and reproducibility of results should be considered during the application and review process. You may have read about the changes in a recent Rock Talk blog post that announced the publication of two new NIH Guide notices: Enhancing Reproducibility through Rigor and Transparency and Consideration of Sex as a Biological Variable in NIH-funded Research. We anticipate that the new instructions will be released in the fall of 2015 and will take effect for all research grant applications submitted on or after January 25, 2016.

As always, if you have questions or concerns, contact your program director. We’re also interested in hearing how your lab validates key biological and chemical reagents, so tell us about your procedures!

Division Director Mike Rogers Retires

Mike Rogers, Ph.D.Mike Rogers, who has directed the NIGMS Division of Pharmacology, Physiology, and Biological Chemistry for the past 22 years, retired today. Throughout his NIH career, Mike has been a champion for chemistry and its important role in biomedical research.

Before joining NIGMS 26 years ago, Mike worked for more than a decade in what is now the Center for Scientific Review, where he oversaw the Bioorganic and Natural Products study section.

Between these two positions, Mike completed a detail assignment on Capitol Hill working for Senator Ted Kennedy’s Health, Education, Labor and Pensions Committee, an experience that he says allowed him to see NIH from a different perspective.

Throughout his time at NIGMS, Mike has sought to build scientific bridges. He created the chemistry-biology interface predoctoral training program, which aims to cross-train students in both disciplines. He was instrumental in developing the large-scale collaborative project awards program that “glued” together scientists with diverse expertise to tackle big, unanswered questions in biology. More recently, he forged a link between two fields to help form the new field of quantitative and systems pharmacology. Along the way, he mentored and encouraged others to develop major NIGMS and trans-NIH initiatives, such as those in glycoscience, pharmacogenomics and synthetic organic chemistry.

Continue reading

Clearinghouse for Training Modules to Enhance Data Reproducibility

NIH and NIH-funded Training Modules to Enhance Data ReproducibilityAs part of a series of NIH-wide initiatives to enhance rigor and reproducibility in research, we recently launched a Web page that will serve as a clearinghouse for NIH and NIH-funded training modules to enhance data reproducibility. Among other things, the site will house the products of grants we’ll be making over the next few months for training module development, piloting and dissemination.

Currently, the page hosts a series of four training modules developed by the NIH Office of the Director. These modules, which are being incorporated into NIH intramural program training activities, cover some of the important factors that contribute to rigor and reproducibility in the research endeavor, including blinding, selection of exclusion criteria and awareness of bias. The videos and accompanying discussion materials are not meant to provide specific instructions on how to conduct reproducible research, but rather to stimulate conversations among trainees as well as between trainees and their mentors. Graduate students, postdoctoral fellows and early stage investigators are the primary audiences for the training modules.

Also included on the page are links to previously recorded reproducibility workshops held here at NIH that detail the potentials and pitfalls of cutting-edge technologies in cell and structural biology.

Training is an important element of the NIGMS mission and a major focus of NIH’s overall efforts to enhance data reproducibility. In addition to the training modules we’ll be funding, we recently announced the availability of administrative supplements to our T32 training grants to support the development and implementation of curricular activities in this arena.

I hope you find the resources on this site useful, both now and as we add more in the future.